Risk Adjustment at the IQTIG Status quo and open problems

Johannes Rauh

Medical Biometry and Statistics Unit Federal Institute for Quality Assurance and Transparency in Healthcare (IQTIG)

Workshop "Statistical Methods for Risk Adjustment in Health Care" 18 March 2021

Outline

- 1 Context
- 2 Current projects
 - Validity of risk adjustment models
 - Provider random effects
 - Using simulations to understand modeling choices
 - Time evolution of risk adjustment models
 - Modeling of continuous variables

3 Conclusions

Quality indicators

- Currently, the IQTIG manages ~ 220 quality indicators in various clinical areas.
- ~ 60 of these quality indicators are risk adjusted.
- Purpose: External quality assurance. Depending on the clinical area, providers with poor indicator results are contacted by:
 - either the IQTIG directly,
 - or agencies at the federal state level.
- Most risk adjustment models rely on clinical (and administrative) data provided by hospitals.
- The number of models that include administrative data from statutory health insurers is increasing.

Types of risk adjusted indicators

The vast majority of risk adjusted indicators are of SMR type:

- 0 observed number of adverse outcomes
- $\overline{E} = \frac{1}{1}$ expected number of adverse outcomes

(indirect standardization, E from logistic regression)

A few indicators are indices that combine observed/expected numbers of k different outcomes:

 $\frac{O^{(1)}+O^{(2)}+\cdots+O^{(k)}}{E^{(1)}+E^{(2)}+\cdots+E^{(k)}}.$

- Other uses of risk adjustment include:
 - Define population, e.g. mortality among low risk patients.
 - Monitoring of providers' average risk E/n.

In the future: Continuous outcomes, e.g. radiation dose during pacemaker insertion.

Current projects

Evaluating risk adjustment model

- Assessing validity of a risk adjustment model is not a purely statistical task, but includes such dimensions as¹:
 - content validity: Are all relevant risk factors included?
 - prediction validity: Can the model predict the outcome?
 - face validity: Is the model accepted by stake holders?
 - \rightarrow Transparency about models and methods

Our Goals:

- Summarize different validity dimensions of our models in a structured way.
- Make modeling choices well-founded and increase consistency between models.

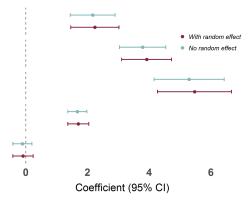
¹Risk Adjustment for Measuring Health Care Outcomes, Fourth Edition (Aupha/Hap Book), 2012, ed. L. lezzoni.

Prediction validity of a risk adjustment model

- Usually, quantities from regression analysis (e.g. AUC, (pseudo-)R²) are reported, but they are not direct measures of statistical validity of risk adjustment models.
- Risk adjustment models are not used to predict actual outcomes, but counterfactual outcomes:
 - What would have been the outcome if the treatment had been provided by an average provider?
- Risk adjustment models *define* a benchmark *E* with which the providers' outcomes *O* are compared.
 - How can we ensure that this benchmark is adequate and fair?

Introducing provider random effects

- In 2020, we started to include provider random effects when estimating some of our models.
- Provider effects are used to estimate E (not to shrink SMRs):
- **1** Fit a (logistic) model that includes provider effects:


$$\pi_{ij} = \text{logit}^{-1}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_{ij} + \theta_i)$$

- **\pi_{ij}** risk for patient *j* treated by provider *i*
- x_{ij} risk factors
- **\beta** model coefficients
- β_0 intercept
- θ_i provider effect (as random effects ~ $N(0, \tau^2)$)

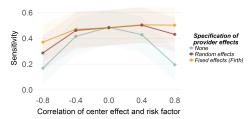
2 Compute "benchmark" risk per patient with $\theta_i \rightarrow 0$, and sum:

$$E_i = \sum_j e_{ij}, \quad \text{where} \quad e_{ij} = \text{logit}^{-1}(\hat{\beta}_0 + \hat{\boldsymbol{\beta}}^T \boldsymbol{x}_{ij})$$

Example: Mortality after pace maker revision

Observation: When using random provider effects, coefficients $\hat{\beta}$ tend to increase by a small amount.

Evaluating the use of random effects

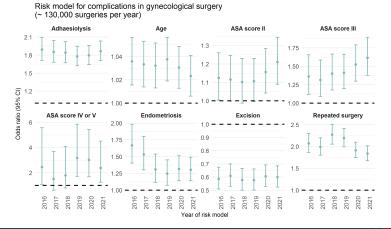

There are clear theoretical reasons for using provider effects; but:

Question:

How to confirm that models improve when including provider effects?

AUC and pseudo- R^2 do not work.

Simulations help to understand the implications.



Detecting worst 5% of providers in different scenarios

Time evolution of risk adjustment models

- Most risk adjustment models are updated once a year.
- Some models need a more thorough overhaul, sometimes a coefficient update suffices.

Current projects

Time evolution of risk adjustment models

- Most risk adjustment models are updated once a year.
- Some models need a more thorough overhaul, sometimes a coefficient update suffices.

Question:

How can we incorporate prior information of past models?


Variable selection:

Use last year's selection as a starting point for model selection.

Coefficients:

- Shrink towards last year's coefficients?
- Can we use ideas from meta analyses?

Modeling of continuous variables

In 2017, we began moving from quintiles to continuous functions.

Conclusions

Conclusions

- The IQTIG develops and manages ~ 60 risk adjustment models.
- In a regulatory setting, we need to strike a balance:
 - To ensure validity, our methods need to be up to date.
 - To ensure face validity, we need to be transparent and comprehensible.
- Some topics that we are currently working on:
 - How to assess and present validity of our models?
 - Building a simulation framework
 - Introducing provider effects
 - Taking time into account: How to best update our models?
 - Risk adjustment for continuous outcomes and indices
 - Smooth modeling of continuous risk factors